今天给各位分享高中三角函数公式大全表格的知识,其中也会对高中三角函数公式大全表格图片进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
高中三角函数的所有公式是什么啊?
高中三角函数用到的公式其实并不多。主要分为以下这几类:
一、诱导公式,他的作用就是将角度比较大的三角函数,转换为角度比较小的三角函数的公式。 主要有四组,利用的是三角函数图像的周期性和(点)对称性。
(1)终边相同的角三角函数值相同
终边相同的角三角函数值相同
(2)相差单倍的π的角三角函数值关系
相差单倍π的角,三角函数值关系
(3)负角的三角函数值关系
负角的三角函数值关系
(4)相差π/2的角之间的三角函数关系
已经高中毕业很多年的人都能记住但是不知道啥意思的那个十字箴言,就是诱导公式的口诀:
奇变偶不变,符号看象限。注意口诀里面的意思:
1、奇偶指的是带π的那个数字,是π/2的奇数倍还是偶数倍;
2、变得不是正负号,而是sin变cos,cos变sin(不适用于tan)
3、我们是把α看做第一象限角,加减那个多少倍的π,根据变号之前sin/cos来判断是正的还是负的。
如果实在不理解这个口诀,建议找学校老师记忆。如果还不理解,就别理解了,也不用记忆,直接记住下面的公式即可(高考仅仅考1道最多2道这种题目,所以我们记忆下面的公式,通过推导浪费5分钟,并不影响整体考试成绩)
二、和差角公式
我们发现,直接用和差角公式中β换成诱导公式中的对应数值,就得到诱导公式的结果了。
三、倍角半角公式(也有叫升角降幂,降角升幂等等名称)
倍角公式
倍角公式就是把和角公式中的β等于α得出的。
半角公式
就是倍角公式反推出来的
综上所述,只要记住和差角公式就可以得出上述所有公式。如果记忆不下来,可以继续沟通,教你更好的记忆方法和解题技巧。
最后还有一个更常用的公式,叫做提斜公式:
acosA+bsinA=√(a^2+b^2)sin(A+M)
PS: (tanM=a/b)
希望我的回答对你有帮助。
高中必背三角函数公式表
1、公式一:设α为任意角,终边相同的角的同一三角函数的值相等
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
2、公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
3、公式三:任意角α与-α的三角函数值之间的关系
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
4、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
5、公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
6、公式六:π/2±α与α的三角函数值之间的关系
sin(π/2+α)=cosα
sin(π/2-α)=cosα
cos(π/2+α)=-sinα
cos(π/2-α)=sinα
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
cot(π/2+α)=-tanα
cot(π/2-α)=tanα
三角函数公式 高中所有的
1、sin(A+B) = sinAcosB+cosAsinB;
2、sin(A-B) = sinAcosB-cosAsinB;
3、cos(A+B) = cosAcosB-sinAsinB;
4、cos(A-B) = cosAcosB+sinAsinB;
5、tan(A+B) = (tanA+tanB)/(1-tanAtanB);
6、tan(A-B) = (tanA-tanB)/(1+tanAtanB);
7、cot(A+B) = (cotAcotB-1)/(cotB+cotA);
8、cot(A-B) = (cotAcotB+1)/(cotB-cotA)。
三角函数应用:
三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。
三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。
三角函数角度公式表
三角函数角度公式表如下:
sin(A+B)=sinAcosB+cosAsinB。cos(A+B)=cosAcosB-sinAsinB。tan(A+B)=(tanA+tanB)/(1-tanAtanB)
诱导公式口诀“奇变偶不变,符号看象限”意义:
k×π/2±a(k∈z)的三角函数值
(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;
(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。
在△ABC中,A、B、C为其内角,a、b、c分别表示A、B、C的对边。
(1)三角形内角和:A+B+C=π。
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,a/sinA=b/sinB=c/sinC=2R(R为外接圆半径)
(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a^2=b^2+c^2-2bccosA;b^2=c^2+a^2-2cacosB;c^2=a^2+b^2-2abcosC。
高中三角函数最全的公式
高中三角函数最全的公式如下:
1+sin(a) = [sin(a/2)+cos(a/2)]^2; 1-sin(a) = [sin(a/2)-cos(a/2)]^2;
三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。
也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。
在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
常见的三角函数包括正弦函数、余弦函数和正切函数。
在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。
不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。
另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。
三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。
三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。
更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。
以上内容就是为大家分享的 高中三角函数公式大全表格(高中三角函数公式大全表格图片) 相关知识,希望对您有所帮助,如果还想搜索其他问题,请收藏本网站或点击搜索更多问题。